Homocysteine induces cytotoxicity and proliferation inhibition in neural stem cells via DNA methylation in vitro.

نویسندگان

  • Ningning Lin
  • Shanchun Qin
  • Suhui Luo
  • Shanshan Cui
  • Guowei Huang
  • Xumei Zhang
چکیده

Mild to moderate hyperhomocysteinemia has been implicated in neurodevelopmental disorders and neurodegenerative diseases in human studies. Although the molecular mechanisms underlying the effects of homocysteine (Hcy) neurotoxicity on the nervous system are not yet fully understood, inhibition of neural stem cell (NSC) proliferation and alterations in DNA methylation may be involved. The aim of the present study was to characterize the effects of Hcy on DNA methylation in NSCs, and to explore how Hcy-induced changes in DNA methylation patterns affect NSC proliferation. We found that D,L-Hcy (30-1000 μm) but not L-cysteine inhibited cell proliferation and reduced levels of global DNA methylation in NSCs from neonatal rat hippocampus and increased cell injury. High levels of Hcy also induced an increase in S-adenosylhomocysteine (SAH), a decrease in the ratio of S-adenosylmethionine (SAM) to SAH, and a reduction in protein expression of the DNA methyltransferases DNMT1, DNMT3a and DNMT3b and their enzymatic activity. Moreover, the DNMT inhibitor zebularine reduced the global DNA methylation level and inhibited NSC proliferation. Our results suggest that alterations in DNA methylation may be an important mechanism by which high levels of Hcy inhibit NSC viability in vitro. Hcy-induced DNA hypomethylation may be caused by a reduction in the DNMT activity which is regulated by the cellular concentrations of SAM and SAH, or their protein expression levels. Our results also suggest that Hcy may play a role in the pathogenesis of certain nervous system diseases via a molecular mechanism that involves negative regulation of NSC proliferation and alterations in DNA methylation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alpha-Tocopherol increases the proliferation of induced pluripotent stem cell derived neural progenitor cells

In addition to its antioxidant effect, Vitamin E or α–tocopherol is suggested to enhance remyelination in the animal model of non-inflammatory demyelination. In this study, the possible proliferative effect of vitamin E on human- induced pluripotent stem cell-derived neural progenitors (hiPS-NPs) and the underlying mechanisms were investigated in vitro. NPs were induced from iPS cells via 3 ste...

متن کامل

Evaluation of Changes in Global DNA Methylation during Osteoblastic Differentiation of Mesenchymal Stem Cells: A Laboratory Study

Background and Objectives: Control processes in osteoblastic differentiation of mesenchymal stem cells are not yet fully understood. Epigenetic mechanisms, especially the methylation of CpG Islands in the promoter of genes, are considered as one of the most important control mechanisms in stem cell differentiation. In the process of differentiation, it is debated whether only the methylation of...

متن کامل

Intermittent hypoxia reduces microglia proliferation and induces DNA damage in vitro

Objective(s):Intermittent hypoxia (IH), caused by obstructive sleep apnea (OSA), could cause hippocampus or neuron damage through multiple signaling pathways, while the underlying mechanisms are still unclear. Thus, the present study aimed to explore the effect of IH on the biological functions of microglia cells. Materials and Methods:Cell proliferation of BV2 cells after exposure to IH were o...

متن کامل

O15: Using Stromal Cell-Derived Factor-I as Bio Active Motif in A Novel Self-Assembly Peptide Nanofiber Scaffold: an Approach to Improve Cell Therapy in Brain Injury

Traumatic brain injury (TBI) is one of the main causes of mortality and morbidity worldwide. Despite extensive investigations over the past few decades, no effective therapies exist to improve the brain function in patients with TBI. Neural tissue engineering is an attractive therapeutic approach to restore the brain structure and function of damaged tissue. Bioactive motif of Stromal cell-deri...

متن کامل

A Review of the Factors Affecting the Proliferation of Neural Stem and Progenitor Cells

Neural stem cells are undifferentiated cells that are located in limited areas of central nervous system. These cells have proliferation and self-renew ability and can be differentiated into neurons and glial cells. Mature nerve cells do not have proliferative ability; and due to the limited number of nerve stem cells, injuries to the nervous system are not recoverable. The purpose of this revi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The FEBS journal

دوره 281 8  شماره 

صفحات  -

تاریخ انتشار 2014